Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1177209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692414

RESUMO

Secondary soil salinization in arid and semi-arid regions is a serious problem that severely hampers local agricultural productivity and poses a threat to the long-term sustainability of food production. the utilization of organic soil amendments presents a promising approach to mitigate yield losses and promote sustainable agricultural production in saline-alkali soil. In this study, we established four distinct treatments, chemical fertilizer (CK), humic acid with chemical fertilizer (HA), carboxymethyl cellulose with chemical fertilizer (CMC), and amino acid with chemical fertilizer (AA), to elucidate their respective impacts on the reclamation of saline soil and the growth of maize. The findings of our study reveal notable variations in desalination rates within the 0-40 cm soil layer due to the application of distinct soil amendments, ranging from 11.66% to 37.17%. Moreover, application of amendments significantly increased the percentage of soil macro-aggregates as compared to the CK treatment. Furthermore, HA and AA treatments significantly augmented soil nutrient content (HA: 48.07%; AA: 39.50%), net photosynthetic rate (HA: 12.68%; AA: 13.94%), intercellular CO2 concentration (HA: 57.20%; AA: 35.93%) and maize yield (HA:18.32%; AA:16.81%). Correlation analysis and structural equation modeling unveiled diverse mechanisms of yield enhancement for HA, CMC, and AA treatments. HA enhanced yield by increasing organic matter and promoting soil aggregate formation, CMC improved soil water content and facilitated salt leaching due to its excellent water-holding properties, while AA increased yield by elevating soil organic matter and effective nitrogen content. Among the array of soil amendment materials scrutinized, HA treatment emerged as the most promising agent for enhancing soil conditions and is thus recommended as the preferred choice for treating local saline soils.

2.
Food Sci Nutr ; 10(11): 3598-3607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348792

RESUMO

In this study, eight-year-old wine grape plants (Cabernet Sauvignon) were subjected to five different iron treatments: ferrous sulfate, ferric ethylenediaminetetraacetic acid (EDTA-Fe), ferric citrate, ferric gluconate, and ferric sugar alcohol, and conventional fertilization. Foliar spraying with clear water was used as the control treatment. The effects of different iron treatments on berry quality and flavonoid accumulation in grape peels were explored. All five iron treatments affected the sugar, acid, and peel flavonoid contents of grape berries, but the contents varied greatly among the different iron treatments. Foliar spraying with iron increased berry sugar content and reduced acid content. In addition, foliar spraying with ferrous sulfate, EDTA-Fe, ferric gluconate, and ferric sugar alcohol reduced the total anthocyanin, flavanol, and flavonol contents in the peel. The unique flavonoid monomer content of the peel was significantly higher under ferric citrate treatment than under the control and other iron treatments. Moreover, the results showed that foliar spraying with ferric citrate balanced the berry sugar-acid ratio and also increased the anthocyanin, flavanol, and flavonol contents of the grape peel, thereby improving the overall nutritional status of the berries and the final wine quality. The results obtained in this study demonstrate that different iron treatments could improve grape berry quality and clarify the effects of different exogenous iron treatments.

3.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924339

RESUMO

Nanozymes are emerging as a promising strategy for the treatment of tumors. Herein, to cope with the tumor microenvironment (TME), weak acidity (pH 5.6 to 6.8) and trace amounts of overexpressed hydrogen peroxide (H2O2) (100 µM-1 mM), we report nitrogen-doped graphene nanomaterials (N-GNMs), which act as highly efficient catalytic peroxidase (POD)-mimicking nanozymes in the TME for tumor-specific treatment. N-GNMs exhibit POD catalytic properties triggered by a weakly acidic TME and convert H2O2 into highly toxic hydroxyl radicals (•OH) thus causing the death of tumor cells while in the neutral pH surroundings of normal tissues, such catalysis is restrained and leaves normal cells undamaged thereby achieving a tumor-specific treatment. N-GNMs also display a high catalytic activity and can respond to the trace endogenous H2O2 in the TME resulting in a high efficiency of tumor therapy. Our in vitro chemical and cell experiments illustrated the POD-like activity of N-GNMs and in vivo tumor model experiments confirmed the significant inhibitory effect of N-GNMs on tumor growth.

4.
Stem Cell Res Ther ; 11(1): 383, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894204

RESUMO

BACKGROUND: Stem cell therapies have gained great attention for providing novel solutions for treatment of various injuries and diseases due to stem cells' self-renewal, ability to differentiate into various cell types, and favorite paracrine function. Nevertheless, the low retention of transplanted stem cell still limits their clinical applications such as in wound healing in view of an induced harsh microenvironment rich in reactive oxygen species (ROS) during inflammatory reactions. METHODS: Herein, a novel chitosan/acellular dermal matrix (CHS/ADM) stem cell delivery system is developed, which is of great ROS scavenging activity and significantly attenuates inflammatory response. RESULT: Under ROS microenvironment, this stem cell delivery system acts as a barrier, effectively scavenging an amount of ROS and protecting mesenchymal stem cells (MSCs) from the oxidative stress. It notably regulates intracellular ROS level in MSCs and reduces ROS-induced cellular death. Most importantly, such MSCs delivery system significantly enhances in vivo transplanted stem cell retention, promotes the vessel growth, and accelerates wound healing. CONCLUSIONS: This novel delivery system, which overcomes the limitations of conventional plain collagen-based delivery system in lacking of ROS-environmental responsive mechanisms, demonstrates a great potential use in stem cell therapies in wound healing.


Assuntos
Derme Acelular , Quitosana , Espécies Reativas de Oxigênio , Células-Tronco , Cicatrização
5.
ACS Appl Mater Interfaces ; 11(12): 11157-11166, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30869853

RESUMO

It is well known that tumors have an acidic pH microenvironment and contain a high content of hydrogen peroxide (H2O2). These features of the tumor microenvironment may provide physiochemical conditions that are suitable for selective tumor therapy and recognition. Here, for the first time, we demonstrate that a type of graphene oxide nanoparticle (N-GO) can exhibit peroxidase-like activities (i.e., can increase the levels of reactive oxygen species (ROS)) under acidic conditions and catalyze the conversion of H2O2 to ROS-hydroxyl radicals (HO·) in the acidic microenvironment in Hela tumors. The concentrated and highly toxic HO· can then trigger necrosis of tumor cells. In the microenvironment of normal tissues, which has a neutral pH and low levels of H2O2, N-GOs exhibit catalase-like activity (scavenge ROS) that splits H2O2 into O2 and water (H2O), leaving normal cells unharmed. In the recognition of tumors, an inherent redox characteristic of dopamine is that it oxidizes to form dopamine-quinine under neutral (pH 7.4) conditions, quenching the fluorescence of N-GOs; however, this characteristic has no effect on the fluorescence of N-GOs in an acidic (pH 6.0) medium. This pH-controlled response provides an active targeting strategy for the diagnostic recognition of tumor cells. Our current work demonstrates that nanocatalytic N-GOs in an acidic and high-H2O2 tumor microenvironment can provide novel benefits that can reduce drug resistance, minimize side effects on normal tissues, improve antitumor efficacy, and offer good biocompatibility for tumor selective therapeutics and specific recognition.


Assuntos
Grafite/química , Peróxido de Hidrogênio/química , Nanopartículas/química , Animais , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Catalase/química , Catalase/metabolismo , Catálise , Sobrevivência Celular/efeitos dos fármacos , Dopamina/química , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...